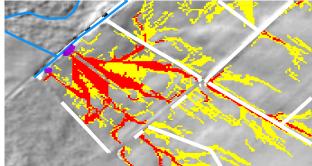

Delivering Multiple Public Goods – A Farmer's Perspective

The Experience from N. Ireland, at the Farm & Regional Level

John Gilliland

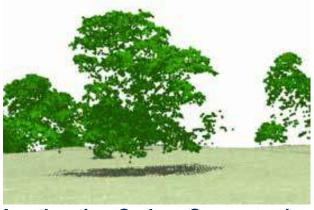
Professor of Practice, Queens University Belfast; Chair, ARC Zero Special Advisor, AHDB; Owner, Brook Hall Estate.

29th February 2024



Farming Delivers Multiple Public Goods - Not Single Agendas

Producing Nutritious Food & Tackling Malnutrition


Improving Water Quality by Reducing Over Land Flow

Delivering Soil Improvement Both Fertility & Health

Optimising Biodiversity, Especially Below Ground

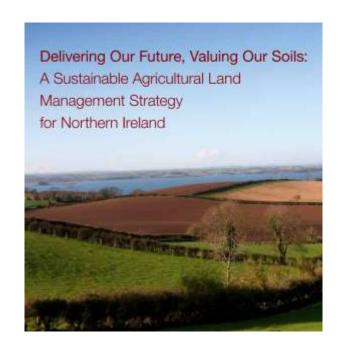
Accelerating Carbon Sequestration, Both Above & Below Ground

Generating Profits

2014, Asked to Chair N. Irish, Independent Expert Working Group Inclusive of Farmers, NGOs, Policy & Food Chain

Inspirational Ideas

NEWSLETTER FEBRUARY 2017

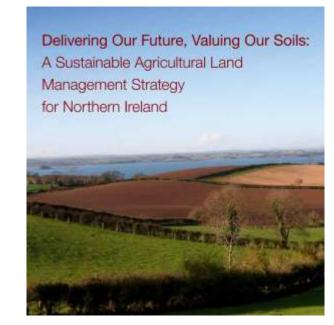

Delivering Farm Profitability and Better Environmental Performance using multi-functional technologies: Ingredients for a Sustainable Agriculture Strategy for Northern Ireland

Sustainable Agriculture Land Management Strategy Launched, 2016

With Soil & Water at its core, with written support of Farmers Union & NGOs

ObservationsN. Ireland Environmental Performance, 2016

Since 2004 – N balance down 10%; N efficiency up 12%
P balance down 32%; P efficiency up 28.5%
N levels in Water, Good, 15-20mg



But

- 62% of Water Bodies failing Good Quality Status
- 80% of P was entering rivers by "Over Land" flow of excessive rainfall
- The "Tail" of our Phosphate legacy was greater than 50 Years....

Observations on Farming Production N. Ireland Farm Efficiencies & Practices, 2016

Grass Dry Matter Utilisable Yields – Average, 5.1t/ha/yr
 Top 5%, 16t/ha/yr

- Soil Analysis Only 2% of acreage analysed on an annual basis
- Soil pH 64% land below pH 6, ??% land at pH 6.5 (optimal for legumes)
- Soil optimal fertility 18%
- Land planted in trees 6%
- Land rented on a 11 month lease (conacre) 30%

Key Recommendation - If you can't Measure you can not Manage...The use of New Measuring Technologies on all farms, at individual field scale

Aerial LiDAR Survey at 40 scans per metre

Soil Sampling to one metre deep

When repeated every 5 yrs, measures actual change, essential for TIER 3

Government Response – A Pilot in Three River Catchments Plus, "light touch" in N. Ireland wide pilot

Level of Farmer Participation – 73% in Catchments

River Bann – 513 farms, 7,340 fields, 11,547 ha

Colebrooke – 289 farms, 5,059 fields, 13,108 ha

Strule - 289 farms, 4,677 fields, 16,989 ha

Rest of NI. - 522 farms, 12,629 fields, 22,220 ha

Total: 1,613 farms, 63,000 ha, £2.3m of EU & NI Public Funding

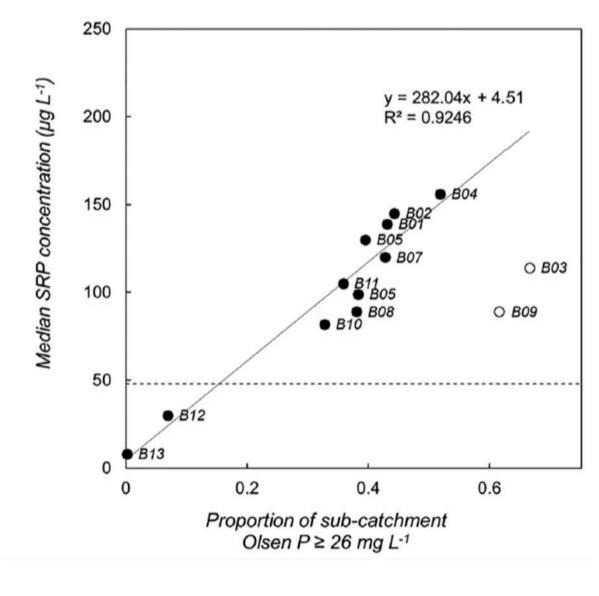
Training – 50% in Catchments attended, 90% in "light touch" Pilot

Research in DAERA Soil Pilot and Nutrients Action Programme Research has shown a strong positive relationship between soil P excess and water quality.

Science of the Total Environment 687 (2019) 277-286

Contents lists available at ScienceDirect

Science of the Total Environment



A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales

Rachel Cassidy a, lan A. Thomas a,b, Alex Higgins a, John S. Bailey a, Phil Jordan C

^{*} Agri-Environment Branch, Agri-Food and Biosciences Institute (AFBI), Newforge Lane, Belfast BT9 5PX, Northern Ireland, UK

b UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland

^c School of Geography and Environmental Sciences, Ulster University, Coleraine, Northern Ireland, UK

Results from Pilot in Three River Catchments Including the N. Ireland wide pilot

Behavioural Change Survey by Leeds University

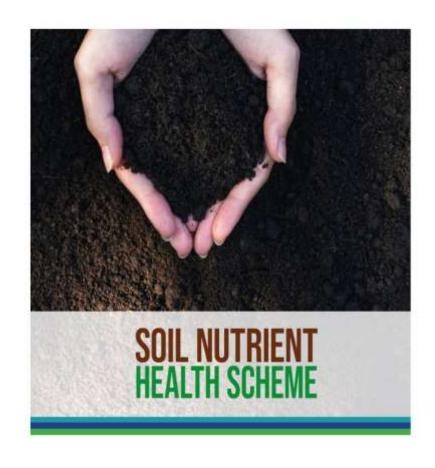
86% - Changed fertiliser type used

80% - Increased lime usage

68% - Changed fertiliser quantity

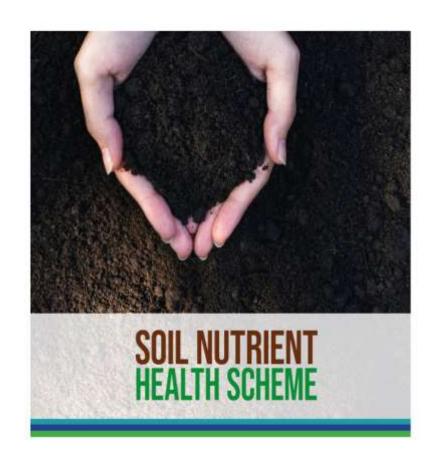
28% - Changed quantity of slurry imported or exported

"Run off" Risk Maps were particularly useful



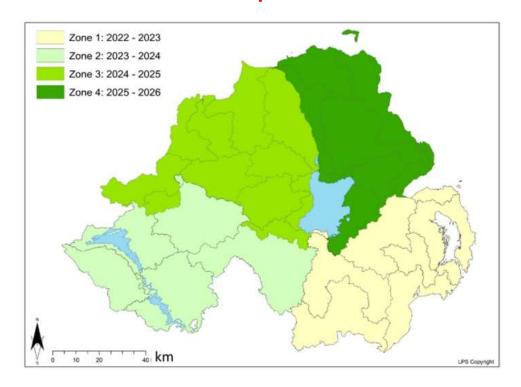
Is Improving Soil Health & Water Quality Possible, Regionally?

Is Improving Soil Health & Water Quality Possible, Regionally?


- £38m Scheme opened May 2022
- Baseline every field, tree & hedge, over 4 Yrs.
- Independent Soil Sampling & LiDAR Surveys

Is Improving Soil Health & Water Quality Possible, Regionally?

- £38m Scheme opened May 2022
- Baseline every field, tree & hedge, over 4 Yrs.
- Independent Soil Sampling & LiDAR Surveys
- Voluntary Scheme (Carrot & Stick....)
- Hope to repeat in Five Years' time
- Results returned to Individual Farmers
- Soil Fertility, Carbon Stocks & Run Off Risk Maps
- Mandatory online Training



SOIL NUTRIENT HEALTH SCHEME

Farmer Engagement

- Zone 1, 95% Uptake, 150k fields
- Zone 2, 92% Uptake, 190k Fields

An EIP Operational Group - Accelerating Seven N. Irish Farms towards Net Zero

Roger & Hilary Bell Sheep Simon Best Arable & Beef **Patrick Casement** Sheep & Sucklers John Egerton Suckler Beef John Gilliland Willow & Dry Stock **Hugh Harbison** Dairy Ian McClelland Dairy

Where did we start..... We Learnt our Numbers.....

Baselined & Benchmarked.....

- GHG Emissions
- Carbon Sequestration
- Carbon Stocks in Soil
- Carbon Stocks in Trees
- Net Carbon Position
- Behavioural Change
- Delivering other Natural Capital

Net Carbon as a Percentage of Gross Emissions Using TIER 1 Sequestration Module

2021 Agrecalc Analysis	Enterprises	Gross Emissions t CO2-e/yr	Gross Sequestration t CO2-e/yr	Net Emissions t CO2-e/yr	% Reduction
Ian McClelland	Dairy	1,101	309	792	28%
Hugh Harbinson	Dairy	2,009	549	1,459	27%
John Egerton	Beef & Sheep	1,475	444	1,031	30%
Roger & Hilary Bell	Sheep with Beef	754	456	298	60%
Simon Best	Arable with Beef	1,799	738	1,061	41%
Patrick Casement & Trevor Butler	Beef & Sheep	492	548	-56	111%
John Gilliland	Willows with Dry Cows	151	156	-4	103%

No two farms are the same.....

Some farms will find the journey easier than others.....

Some farms are beyond Net Zero already.....



Measuring Carbon in Trees & Hedges Using Aerial LiDAR at BROOK HALL

Measuring Carbon in Trees & Hedges Using Aerial LiDAR at BROOK HALL

	Brook Hall Estate Totals						
Vegetation type	Hedge Length (km)	AGB (t)	C (t)	BGB* (t)	C (t)	Total C (t)	
Hedge 0-4m	0.78	14.92	7.1	2.86	1.3	8.5	
Hedge 4-7m	0.35	6.36	3.0	1.22	0.6	3.6	
Hedge 7-10m	0.25	10.32	4.9	1.98	0.9	5.9	
Hedge >10m	1.00	156.17	74.5	29.99	14.1	88.6	
Total Hedges	2.38	187.77	89.5	36.05	16.94	106.49	
	Canopy Area (ha)						
Single Trees	1.87	494.78	236.0	95.00	44.6	280.6	
Deciduous Woodland	17	1352.74	645.1	259.73	122.1	767.2	
Coniferous Woodland	0.09	6.17	2.9	1.27	0.6	3.5	
Biomass	28.96	337.61	161.0	64.82	30.5	191.5	
Total	47.92	2,379.07	1,134.6	456.8	214.7	1,349.3	
			•				

AGB Above Ground Biomass

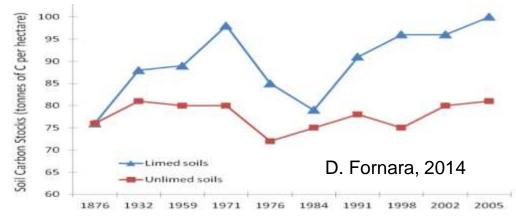
BGB Below Ground Biomass

Measuring Carbon in the Soil Stratified for different Land Uses & Land Managements at Brook Hall

Land Category	Total ha	Soil pH	Av. LOI/SOM	No. of Soil Cores	No. of Samples	Av. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category
<10% Soil Org. Matter, Short Rotation Willow Coppice	34.2ha	pH 6.2	7.60%	55	11	4.20%	3.20%	87.1t	2,978.8t
<10% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	1.4ha	pH 6.3	9.30%	15	3	4.90%	3.10%	87.3t	122.2t
<10% Soil Org. Matter, Decideous Woodland	0.5ha	pH 5.3	9.10%	15	3	5.80%	4.10%	114.7t	57.4t
10-20% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	12.9ha	pH 6.1	13.70%	30	6	5.50%	3.40%	93.7t	1,208.7t
10-20% Soil Org. Matter, Silvopasture, no slurry/FYM	4ha	pH 4.8	14.80%	25	5	5%	2.80%	81.6t	326.4t
10-20% Soil Org. Matter, Decideous Woodland	4.6ha	pH 5.3	13%	25	5	6.90%	4.90%	136t	625.6t
Totals	57.6ha			165 Soil Cores	33 C. Samples			92.3t/ha	5,319.1t of C.

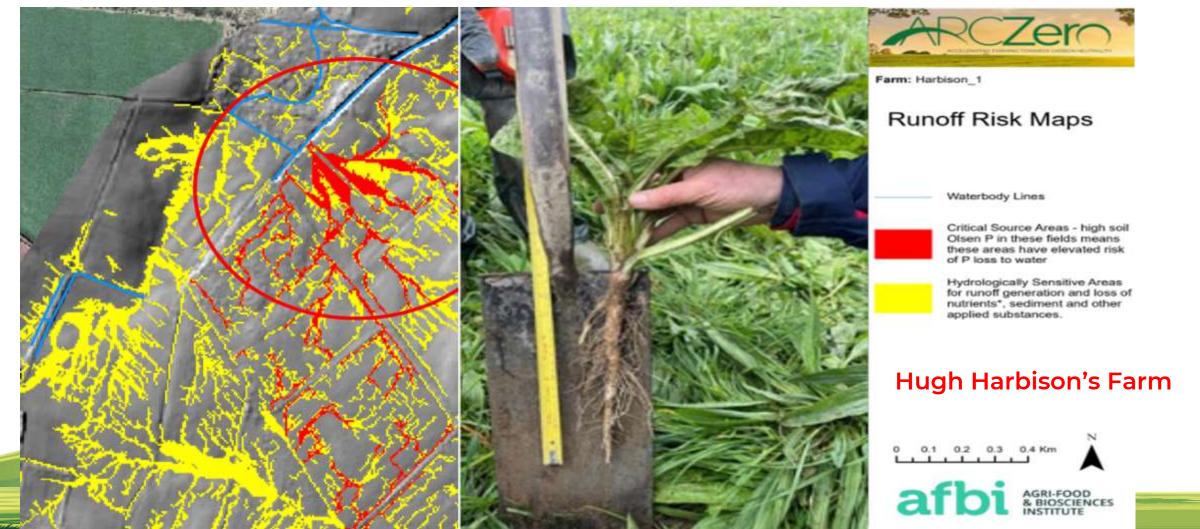
Soil Carbon at Brook Hall = 5,319 t of C, or 19,468 of CO2e

Total Carbon Stocks across ARC Zero farms.....


Total ARC Zero CO2e Stocks	Soil Carbon	Tree Carbon	Total Carbon	% C in Soil
Ian McClelland	31,813t	1,310t	33,123t	96%
Hugh Harbison	68,054t	1,969t	70,023t	97%
John Egerton	31,813t	1,310t	33,123t	96%
Roger & Hilary Bell	50,819t	688t	51,507t	98%
Simon Best	237,915t	6,493t	244,407t	97%
Patrick Casement & Trevor Butler	54,556t	4,022t	58,578t	93%
John Gilliland	19,468t	4,937t	24,405t	80%
		Total	515,166t	

ARC Zero farms manage 515,166t of CO2e, 97% is within the Soil Target for 2026, 530,000t.... But how do we build carbon stocks....???

Building Carbon Stocks & Multiple Public Goods, Simultaneously Correcting Soil pH – Nutrient Uptake Efficiency


Soil pH	Nitrogen Utilisation	Phosphorus Utilisation	Potassium Utilisation	% of Fertiliser Wasted
5.0-5.5	77%	48%	77%	32%
5.5-6.0	85%	52%	100%	21%
6.0-6.5	100%	100%	100%	0%

Teagasc Green Book 2017

Building Carbon Stocks & Multiple Public Goods, Simultaneously Multi Species Pastures – Water Infiltration, Biodiversity, GHG Mitigation

ARCZero

Willow SRC (28 Yrs. Old)

D. Woodland (30 Yrs. Old)

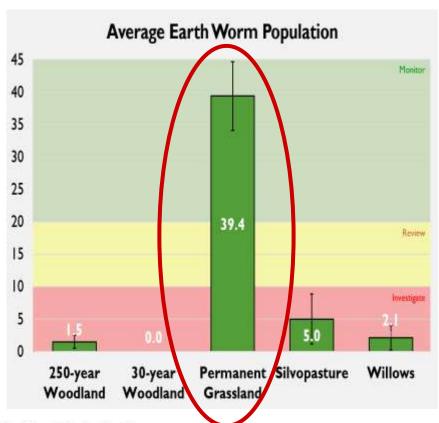
COMPARING DIFFERENT LAND USES

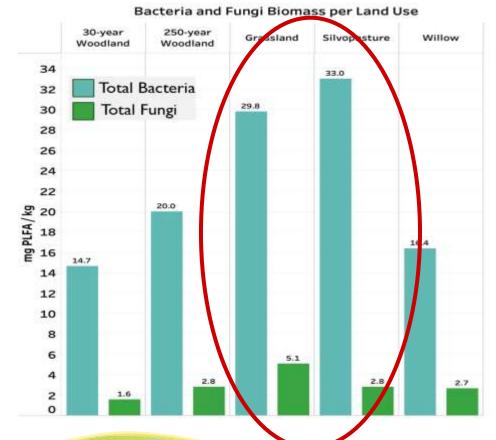
Permanent Pastureland (200 Yrs. Old)

BROOKHALL Estate & Gardens

R. Buffara, WUR, 2023

Silvopasture (120 Yrs. Old)




D. Woodland (250 Yrs. Old)

Delivering Multiple Public Goods Simultaneously

Role of Livestock Faeces.... In Increasing Soil Biodiversity......

Delivering Multiple Public Goods Simultaneously

The Importance of Increasing Biodiversity Under the Soil.... 3 New Papers....

The age of extinction

More than half of Earth's species live in the soil, study finds

Soil estimated to be home to 90% of world's fungi, 85% of plants and more than 50% of bacteria, making it the world's most species-rich habitat

National Academy of Science, Aug 23

Cessation of grazing causes biodiversity loss and homogenization of soil food webs

Maarten Schrama^{1,2}, Casper W. Quist^{3,4}, G. Arjen de Groot⁵, Ellen Cieraad^{1,6}, Deborah Ashworth², Ivo Laros⁵, Lars Hestbjerg Hansen^{7,8}, Jonathan Leff^{9,10}, Noah Fierer^{9,10} and Richard D. Bardgett² Oct 2023

Revier

The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review

Arne Brummerloh 1,* and Katrin Kuka 200

Dec 2023

Embedding Experience in Pillars of AHDB's Environment Strategy

Collaboration:

Changing the Narrative.....

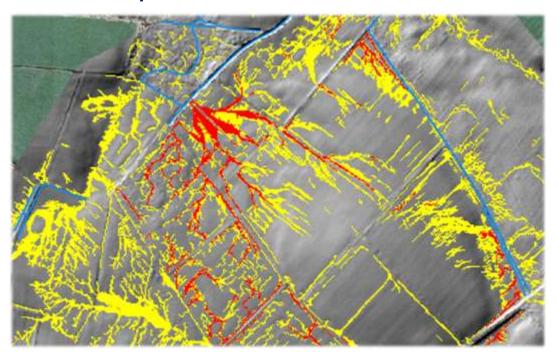
Multiple public goods

Net carbon

Roadmaps

Baselining

Economics & efficiency


Evidence:

Knowing your Numbers.....

Delivering Multiple Public Goods – A Farmer's Perspective

The Experience from N. Ireland, at the Farm & Regional Level

Through Building Consensus, Using Forensic Measurement & Management to

Empower Farmers, Multiple Public Goods can be Delivered.....

